Magnetic tweezers allow the user to apply force and torque to magnetic beads attached to single DNA molecules, and to observe the resulting changes in DNA extension. This technique, however, is limited to measuring a single degree of freedom: the distance between the magnetic bead and the microscope slide surface. Total internal reflection fluorescence microscopy enables visualization of single molecules that have been tagged with fluorescent dyes. By combining TIRF microscopy and magnetic tweezers, we can simultaneously manipulate DNA molecules and use fluorescence to detect additional parameters, such as the presence of a protein or orthogonal changes in the DNA structure. We have recently installed a custom MT-TIRF instrument. In this talk I will discuss the instrument design, the physics underlying the two techniques, and how we plan to utilize them together to extract more information from our systems of interest.