CM/BIO/ECE Seminars

The combined Condensed Matter/Biological Physics/Electrical and Computer Engineering Seminars take place every Wednesday at 4 PM in the Physics Library (rm 223A, Physics Bldg.)

Fall Semester
Date Speaker/Title/Abstract
10/12/22 Professor Yao Zhai
Radiative cooling: harness sustainable coldness from the universe for passive cooling on the Earth


Radiative cooling is a passive cooling technique featured with zero-energy consumption by emitting terrestrial heat to the universe in form of blackbody thermal radiation. Nocturnal radiative cooling is an ordinary phenomenon of radiative cooling effect happening during a clear and calm night, but day-time sub-ambient radiative cooling material, which can cool an object’s surface temperature below ambient air temperature, has never been found in nature. The first realization day-time radiative cooler has been demonstrated by optimizing spectroscopic property of its surface from ultra-violet to mid-infrared, and indicates the day-time sub-ambient radiative cooling material is a promising cooling solution to save energy from current cooling facilities, such as air conditioners. Therefore, a scalable, low-cost day-time sub-ambient radiative cooling material is demanded to mitigate energy demand in large-scale thermal management systems. In this talk, Dr. Zhai will introduce his research projects related to day-time sub-ambient radiative cooling materials and systems, including scalable-manufactured optical metamaterial, kilo-watt scale radiative cooling collection and storage system, as well as radiative cooling structural materials. He will also discuss potential applications of day-time sub-ambient radiative cooling materials in renewable energy generation, environment sustainability and space cooling in buildings.


Dr. Zhai is an assistant professor in the Department of Mechanical & Aerospace Engineering at the University of Missouri Columbia. Dr. Zhai received his PhD degree from the University of Colorado Boulder and continued his postdoc in the National Institute of Standards and Technology. Dr. Zhai’s research interests focus on investigating novel optical materials with unprecedented properties and developing advanced manufacturing technologies to transform these materials into practical solutions in real-world applications in energy, thermal management, environment sustainability.

9/21/22 Prof. Peifen Zhu
Materials and Device Physics for Solid-State Lighting and Renewable Energy Generation

Materials and Device Physics for Solid-State Lighting and Renewable Energy Generation

Peifen Zhu

Department of Electrical Engineering and Computer Science, University of Missouri


Efficient use of energy and renewable energy production are of paramount importance to society. Lighting accounts for one-eighth of total U.S. electricity consumption. Light-emitting diodes (LEDs) as a new generation lighting technology have extremely long-life spans and consume much less energy. They are penetrating our daily life and adoption of this technology is expected to reduce energy consumption by 40% in 2030.  Despite rapid advances, LED technology is still in its early stage, and continued innovation and breakthroughs are needed to achieve the full potential of this technology. The relatively higher initial cost of LED over incumbent light sources is hindering the widespread adoption of this technology. Therefore, the utilization of cost-effective approaches to achieve high-efficiency LED is instrumental in the application of this technology in the general illumination market. The periodic nanostructures by low-cost self-assembly process were implemented on both LED and OLED, which resulted in a significant enhancement in power efficiency. The key advantage of the self-assembly process is the ability for implementation of roll-to-roll printing method for large wafer-scale manufacturing processes. Developing efficient, stable, and narrow linewidth down-converter materials as well as engineering the properties of existing materials, which can combine with blue LED chips to generate white light with high color quality, will speed up the adoption of LED in the general illumination market. Both material development and additive manufacturing of white LEDs will be presented. Photocatalysis of CO2 is an environmentally friendly and promising technology to convert CO2 into value-added chemical fuels using solar energy. However, the conversion efficiency is low due to the complex reactions. The efforts to improve the CO2 adsorption capacity, light absorption, and charge separation will also be covered.

9/7/22 Prof. Hyunsoo Kim, Department of Physics, Missouri S&T
High-spin quasiparticles in topological semimetal YPtBi

Quasiparticles with total angular momentum greater than j=1/2 can emerge in a solid state with strong spin-orbit interaction. While the existence of such high-spin quasiparticles has been known for decades, their implication has been largely overlooked. The possibility of superconductivity beyond spin-triplet in such solid states attracted substantial attention. In this talk, I will talk about unconventional quantum oscillations and superfluid response in half-Heusler YPtBi which is a topological semimetal with j=3/2 quasiparticles. The angle-dependent quantum oscillation exhibits striking anisotropy, and the London penetration depth varies as almost temperature-linear, both of which are not easily expected in a compound with cubic symmetry. These anomalous behaviors can be explained within j=3/2 Fermi surface and high-spin superconductivity.

Spring Semester
Date Speaker/Title/Abstract
4/13/22 Dr. Daniel Hill, University of Missouri
Chiral magnetism: a geometric perspective

Chiral ferromagnets have spatially modulated magnetic order exemplified by helices, spirals, and more complex patterns such as skyrmion crystals. The theoretical understanding of these states is based on a competition of a strong Heisenberg exchange interaction favoring uniform magnetization and a weaker Dzyaloshinskii-Moriya (DM) interaction promoting twists in magnetization. In this seminar, we consider a geometric approach, in which chiral forces are treated as a manifestation of curvature in spin parallel transport. The resulting theory is a gauged version of the Heisenberg model, with the DM vectors serving as background SO(3) gauge fields. This geometrization of chiral magnetism is akin to the treatment of gravity in general relativity, where gravitational interactions are reduced to a curvature of spacetime. The geometric perspective provides a simple way to define a conserved spin current in the presence of spin-orbit interaction. We show that the gauged Heisenberg model in d=2 is partly solvable when an applied magnetic field matches the gauge curvature. This model is shown to have a skyrmion-crystal ground state in the presence of a sufficiently small magnetic field.

Reference: Daniel Hill, Valeriy Slastikov, Oleg Tchernyshyov, SciPost Phys. 10, 078 (2021) 

3/2/22 Prof. Suchi Guha, University of Missouri
Ultrafast laser system in MU: new tools for nonlinear optics and time-resolved spectroscopy



As part of an NSF- MRI award, we have established an amplified ultrafast laser laboratory. The ultrafast laser system is applicable to a broad range of multidisciplinary problems, including transport of carriers in organic electronics and quantum materials, quasiparticle dynamics in multifunctional materials, second and higher harmonic generation, laser pulse shaping, and basic research on the spectroscopy of all materials - from hard to soft condensed matter materials.


In this presentation, I will briefly discuss the capabilities of the laser system and show our preliminary results in the area of nonlinear optics, in particular, a time-resolved optical method for monitoring transport in devices, and time-resolved spectroscopic studies from halide perovskites.

Fall Semester
Date Speaker/Title/Abstract
11/17/21 Prof. Duminda Sanjeewa, MURR
Synthesis, Magnetic Behavior and Neutron Diffraction of Triangular Magnetic Materials

Triangular magnetic structures have gained considerable interest due to their rich magnetic behavior and structural simplicity. These structures contain the motif of a triangle as the main structural feature, leading to geometric frustration and implicitly to degenerate magnetic ground states. Most of the previous work on triangular lattice structures was performed on simple transition metal halides or oxides. Therefore, it presents an interesting challenge for materials scientists to synthesize new class of materials that preserve the quasi-two dimensionality of the structures. This talk will feature two class of materials (1) triangular materials synthesized using high-pressure hydrothermal method (2) AREQ2 (A = Alkali metal, RE= rare earth, Q = O, S, Se) triangular magnetic materials. 

First, I will focus on synthesis, magnetism and use of neutron diffraction to characterize the magnetic phase diagram of several classes of hydrothermally synthesized oxy-anions based transition metal compound series (EOyx-, E = As, Mo, Se). These linking groups can lead to an enormous array of new structure types with great potential for exploring and characterizing new emergent phenomena. Here, I will focus the role of vanadate building blocks (VO43-) in magnetically interesting transition metal layered materials. The vanadates display a rich diversity of structural behavior including multiple bridging modes such as corner and edge sharing. In addition, the presence of vacant d-orbitals in the bridging center can have a significant effect on the magnetic coupling behavior. As the first example, SrM(VO4)(OH) (Mn, Co, Ni) possess on-dimensional magnetic lattice with totally different magnetic properties depending on the transition metal cation even though they crystallizes in same space group. Further, Na2BaM(VO4)2 (M = Mn2+, Fe2+, Co2+) series all have similar chemical structures and are members of the glaserite family, but each one displays dramatically different magnetic behavior between room temperature and 2 K. Another interesting system for discussion is the mixed vanadate carbonate material A2M3(VO4)2(CO3) where A = K, Rb and M = Mn2+, Co2+. The chemical structure is quite complex and has two unique layers, one built of corner sharing vanadates and one with the trigonal planar carbonates. The material also has a complex magnetic behavior and undergoes three magnetic phase transitions between 300-2 K. 

In the second part of my talk, I will focus on the synthesis of ARESe2 single crystal growth, magnetic properties and elastic and inelastic neutron scattering. These crystals crystallize in either trigonal (R-3m) or hexagonal (P63/mmc) crystal systems and associate with an ideal triangular RE3+ layers. The magnetic properties and heat capacity of these compounds were characterized down to 0.4 K. The Yb-compounds exhibit a broader peak in heat capacity ~10 K suggesting short range ordering. 

11/10/21 Andrew Gu, MU Bioengineering
Nanopore Unzip-Sequencing – exploration in biomolecular interactome and next generation information storage

DNA is a new generation material for molecular data storage, with a potential storage capacity several orders of magnitude greater than current methods. Data stored in DNA can be encoded (written) and decoded (read) using sequencing technologies. Advantages of DNA data storage are (i) high data density, (ii) high stability, (iii) ease of copy, and (iv) low energy. Current methods rely on slow, expensive, complicated synthesis of long DNA to write, followed by costly, high error rate (10%) reads. We overcome these challenges with a low-cost, enzyme-free, mix-and-detect method for high fidelity DNA data reading, writing, and rewriting using nanopore technology and universal rewritable blank medium DNA without the need for nucleic acid synthesis. This technology has applications not only in DNA data storage, but also in DNA barcoding for high throughput screening of nucleic acid secondary structure and drug/ligand binding.

11/3/21 Claudio Mazzoli, BNL
A soft X-ray coherent view of electronic properties in correlated systems, via Resonant X-ray Scattering

Claudio Mazzoli will present some opportunities of scientific investigation by micro-spectro-scattering in the soft X-ray regime of Resonant X-ray Scattering, as implemented and developed at CSX (the Coherent Soft X-ray scattering beamline of NSLS-II, BNL). The peculiarity of such an integrated approach in terms of space, time, energy scales, and correlations, allows revealing unique properties of materials from the microscopic point of view, and shining new light on a variety of interesting cases. Electronic orderings, inhomogeneities, self-organization, collective dynamics and interplay of degrees of freedom will be presented, together with some future ideas.

10/27/21 Alex Bretana
Spontaneous cluster formation in stoichiometric quantum critical systems

Metallic systems with magnetic ions embedded which have been prepared to undergo a second-order phase transition at zero Kelvin, namely the quantum critical systems, historically appear to fall into two distinct categories: (chemically) heavily-doped systems in which the unusual properties can be attributed to a disorder-induced distribution of Kondo shielding temperatures and (nearly) stoichiometric systems where the departures from Fermi-liquid theory have been attributed to intrinsic instabilities. We show that this historic distinction between doped and stoichiometric systems should be left to history: we find that magnetic clusters associated with a distribution of Kondo shielding temperatures found in heavily-doped quantum critical Ce(Fe0.755Ru0.245)2Ge2 are also present in CeRu2Si2, a stoichiometric system close to a quantum critical point. In both the doped and stoichiometric system, the response of these clusters that emerge upon cooling dominates the macroscopic response of these systems. This implies that the dominant physics that drives heavily doped systems, namely spontaneous formation of magnetic clusters, should also play a leading role in the response of homogeneous systems. This represents a notable departure of how the physics that governs quantum critical points has been described in the literature and it might even point the way towards a magnetic pairing mechanism in high Tc superconductors.

10/20/21 Yuanzhe Zhou, MU Physics
Using machine-learning methods to model RNA-ligand interactions

Convolutional neural network (CNN) and graph convolutional network (GCN) has gained huge success in various tasks, from image classification, video processing to speech recognition and natural language understanding. The success stems from both the well-designed neural network architecture and the increasing computing power in recent hardware. Many attempts have been made to extend these frameworks to biological problems, with varying success. In this talk, I will present the applications of using both CNN and GCN models to predict Mg2+/small molecule binding sites/modes in RNA molecules. These approaches exploit the information of the local binding environment and predict the most probable distribution of the Mg2+ sites or ligand binding modes. Further comparisons between our methods and various types of methods validate the machine-learning approaches.  

10/13/21 Gavin King, MU, Department of Physics and Astronomy
10/6/21 Professor Vadym Mochalin, Missouri University of Science & Technology
MXene Chemistry, Physics, and Applications

A large family of two-dimensional transition metal carbides and nitrides (MXenes) raises interest for many applications due to their high electrical conductivity, mechanical properties [1], potentially tunable electronic structure [2], nonlinear optical properties [3], and the ability to be manufactured in the thin film state [4]. However, their chemistry that is key to development of these applications, still remains largely terra incognita [5]. In this presentation we will discuss recent progress in understanding fundamental MXene chemistry and harnessing it for development of applications.

For example, during delamination and storage in ambient air environment, spontaneous oxidation of MXene flakes leads to formation of titanium oxide, a process that can be harnessed for simple, inexpensive, and environmentally benign manufacturing MXene–titania composites for optoelectronics, sensing, and other applications [6]. We show that partially oxidized MXene thin films containing the in situ formed phase of titanium oxide have a significant photoresponse in the UV region of the spectrum. The relaxation process of photoexcited charge carriers, which takes a long time (24 h), can be accelerated in the presence of oxygen and water vapor in the atmosphere. These properties of spontaneously formed MXene-titania thin films make them attractive materials for photoresistors with memory effect and sensitivity to the environment, as well as many other photo- and environment-sensing applications.

Other selected examples illustrating connections between understanding MXene chemistry and development of their applications will also be considered.



  1. Y. Li, S. Huang, C. Wei, C. Wu, V. N. Mochalin, Nature Communications, 10, 3014 (2019)
  2. M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Advanced Materials, 26(7), 992-1005 (2014)
  3. J. Yi, L. Du, J. Li, L. Yang, L. Hu, S. Huang, Y. Dong, L. Miao, S. Wen, V. N. Mochalin, et al., 2D Materials, 6, 045038 (2019)
  4. Y. Dong, S. Chertopalov, K. Maleski, B. Anasori, L. Hu, S. Bhattacharya, A. M. Rao, Y. Gogotsi, V. N. Mochalin, R. Podila, Advanced Materials, 30(10), 1705714 (2018)
  5. S. Huang, V. N. Mochalin, Inorganic Chemistry, 58(3), 1958 (2019)
  6. S. Chertopalov, V. N. Mochalin, ACS Nano, 12(6), 6109-6116 (2018)
9/29/21 Prof. SuYang Xu, Department of Chemistry, Harvard University
Observation of the Layer Hall Effect in Topological Axion Antiferromagnet MnBi2Te4

While ferromagnets have been known and exploited for millennia, antiferromagnets were only discovered in the 1930s. The elusive nature indicates antiferromagnets’ unique properties: At large scale, due to the absence of global magnetization, antiferromagnets may appear to behave like any non-magnetic material; At the microscopic level, however, the opposite alignment of spins forms a rich internal structure. In topological antiferromagnets, such an internal structure leads to a new possibility, where topology and Berry phase can acquire distinct spatial textures. We study this exciting possibility in an antiferromagnetic Axion insulator, even-layered MnBi2Te4 flakes. We report the observation of a new type of Hall effect, the layer Hall effect, where electrons from the top and bottom layers spontaneously deflect in opposite directions.


A. Gao, et al.  “Layer Hall effect in a 2D topological axion antiferromagnet.” Nature 595, 521 (2021).

Spring Semester
Date Speaker/Title/Abstract
4/28/21 Adrian Del Maestro, University of Tennessee
Nanoscale confinement towards a one-dimensional superfluid

In one spatial dimension, enhanced thermal and quantum fluctuations should preclude the existence of any long range ordered superfluid phase of matter.  Instead, the quantum liquid should be described at low energies by an emergent hydrodynamic framework known as Tomonaga-Luttinger liquid theory.  In this talk I will present details on some complimentary experimental and theoretical searches for this behavior in helium-4 including: (1) pressure driven superflow through nanopores, and (2) the excitation spectrum of a confined superfluid inside nano-engineered porous silica-based structures. For flow experiments, we have devised a framework that is able to quantitatively describe dissipation at the nanoscale leading to predictions for the critical velocity borne out by recent superflow measurements in nanopores.  In confined porous media, with radii reduced via pre-plating with rare gases, I will discuss ab initio simulations of phase and density correlations inside the pore that are in agreement with recent neutron scattering measurements.   Taken together, these results indicate significant progress towards the experimental observation of a truly one-dimensional quantum liquid.

This work was supported by the NSF through grants DMR-1809027 and DMR-1808440.  

4/21/21 Andre Schleife, UIUC
Electron and ion dynamics in materials due to particle radiation and optical excitation

Materials manipulation via ion or laser beams can achieve precisely tuned atomic geometries that are necessary, e.g. to engineer interactions between defects in quantum materials and for fabricating novel electronic devices with nanoscale dimensions. In addition, such beams are also used to characterize and probe materials properties by means of electronic and optical excitations. I will discuss recent quantum- mechanical first-principles predictions for electron dynamics and the subsequent ionic motion that follows after an excitation of the electronic system. Using real-time time-dependent density functional theory we simulated the underlying ultrafast time scales of electron dynamics in semiconductors and metals. Examples include long-lived electronic excitations in proton, electron, and laser irradiated bulk semiconductors that facilitate diffusion of point defects, such as oxygen vacancies in MgO. We compare such bulk simulations to aluminum surfaces under irradiation, for which we quantify electron emission, charge capture, and pre-equilibrium effects that are unique to thin films or two-dimensional materials. Limitations and possible extensions of the theoretical description will be included in the discussion.